
Configure popular ACME clients to use a

private CA with the ACME protocol

The Automated Certificate Management Environment (ACME) protocol radically

simplifies TLS deployment. With ACME, endpoints can obtain TLS certificates on their

own, automatically. step-ca works with any ACME-compliant (specifically, ACMEv2;

RFC8555) client.

About this tutorial

Learn how to configure popular ACME clients to get certificates from step-ca .

Examples include copy/paste code blocks and specific commands for nginx,

certbot, and more.

When complete, you will have a fully functioning ACME configuration using a

private certificate authority.

Estimated effort: Reading time ~7 mins, Lab time ~20 to 60 mins.

If you run into any issues, please let us know in GitHub Discussions or on our Discord

server.

Requirements

Open source - For step-ca , this tutorial assumes you have initialized and started

up an instance using the steps in Getting Started. Additionally, you'll need to

configure your CA with an ACME provisioner. Run step ca provisioner add acme

--type ACME , and restart your CA.

Smallstep Certificate Manager - this tutorial assumes you have created a hosted

or linked authority and are running a local ACME Registration Authority.

Docs Menu

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 1/17

https://github.com/smallstep/certificates/discussions
https://u.step.sm/discord
https://u.step.sm/discord
https://smallstep.com/docs/step-ca/getting-started/
https://smallstep.com/docs/certificate-manager/acme/
https://smallstep.com/docs/certificate-manager/getting-started/
https://smallstep.com/docs/certificate-manager/getting-started/
https://smallstep.com/docs/registration-authorities/acme-for-certificate-manager/
https://smallstep.com/

Overview

Here are the most common configuration parameters for any ACME client:

DIRECTORY URL

Most ACME clients connect to Let’s Encrypt’s CA by default. To connect to a private CA,

you need to point the client your ACME Directory URL.

A single instance of step-ca can have multiple ACME provisioners, each with their

own ACME Directory URL. The URL follows this form:

https://{ca-host}/acme/{provisioner-name}/directory

For example, an ACME provisioner named ACME on the host ca.internal has the

directory URL:

https://ca.internal/acme/ACME/directory

ACME CHALLENGE TYPE

You'll need to select the ACME challenge type.

CA CERTIFICATE

Communication between an ACME client and server uses HTTPS. Many clients will

validate the server’s TLS certificate using the public root certificates in your system’s

default trust store. Some clients will let you pass a CA certificate bundle into the client.

Clients will validate the server’s HTTPS certificate using the public root certificates in

your system’s default trust store. When you’re connecting to Let’s Encrypt, it’s a public

certificate authority and its root certificate is already in your system’s default trust

store. Your internal root certificate isn’t, so HTTPS connections from ACME clients to

step-ca will fail.

There are two ways to address this challenge. Either:

Explicitly configure your ACME client to trust step-ca ’s root certificate, or

Add the step-ca root certificate to your system’s default trust store.

step provides a helper command to do the latter:

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 2/17

https://tools.ietf.org/html/rfc8555#section-7.1.1
https://smallstep.com/blog/everything-pki/#trust-stores

If you are using your certificate authority for TLS in production, explicitly configuring

your ACME client to only trust your root certificate is a better option. You will see how

this method works with an example below. You can find several other examples here.

If you are simulating Let’s Encrypt in pre-production, installing your root certificate is a

more realistic simulation of production. Once your root certificate is installed, no

additional client configuration is necessary.

A Word of Caution

Adding a root certificate to your system’s default trust store is a global

operation. Certificates issued by your CA will be trusted everywhere, including

in many web browsers.

RENEWAL PERIOD

With most ACME clients, you can configure how often you want to renew your

certificates. Choose a renewal period that is two-thirds of the entire certificate's lifetime,

so that you'll have enough time to fix any renewal issues before it's too late.

Popular ACME Clients

Certbot

acme.sh

lego

win-acme

Caddy v2

NGINX

Apache

Node.js

Golang

Python

step certificate install

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 3/17

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients

Traefik

Certify The Web

CERTBOT

certbot is the granddaddy of all ACME clients. Built and supported by the EFF, it's the

standard-bearer for production-grade command-line ACME.

To get a certificate from step-ca using certbot you need to:

1. Point certbot at your ACME directory URL using the --server flag

2. Tell certbot to trust your root certificate using the REQUESTS_CA_BUNDLE

environment variable

For example:

sudo is required in certbot 's standalone mode so it can listen on port 80 to

complete the http-01 challenge. If you already have a webserver running you can use

webroot mode instead. With the appropriate plugin certbot also supports the dns-

01 challenge for most popular DNS providers. Deeper integrations with nginx and

apache can even configure your server to use HTTPS automatically (we'll set this up

ourselves later). All of this works with step-ca .

You can renew all of the certificates you've installed using cerbot by running:

You can automate renewal with a simple cron entry:

The certbot packages for some Linux distributions will create a cron entry or

systemd timer like this for you. This entry won't work with step-ca because it doesn't

set the REQUESTS_CA_BUNDLE environment variable. You'll need to manually tweak it to

do so.

sudo REQUESTS_CA_BUNDLE=$(step path)/certs/root_ca.crt \
 certbot certonly -n --standalone -d foo.internal \
 --server https://ca.internal/acme/acme/directory

sudo REQUESTS_CA_BUNDLE=$(step path)/certs/root_ca.crt certbot renew

*/15 * * * * root REQUESTS_CA_BUNDLE=$(step path)/certs/root_ca.crt certbot

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 4/17

https://certbot.eff.org/
https://www.eff.org/
https://certbot.eff.org/docs/using.html#standalone
https://certbot.eff.org/docs/using.html#standalone
https://certbot.eff.org/docs/using.html#webroot
https://certbot.eff.org/docs/using.html#webroot
https://certbot.eff.org/docs/using.html#dns-plugins
https://certbot.eff.org/docs/using.html#nginx
https://certbot.eff.org/docs/using.html#apache
https://stevenwestmoreland.com/2017/11/renewing-certbot-certificates-using-a-systemd-timer.html
https://github.com/certbot/certbot/issues/7170
https://github.com/certbot/certbot/issues/7170

More subtly, certbot 's default renewal job is tuned for Let's Encrypt's 90 day

certificate lifetimes: it's run every 12 hours, with actual renewals occurring for

certificates within 30 days of expiry. By default, step-ca issues certificates with much

shorter 24 hour lifetimes. The cron entry above accounts for this by running certbot

renew every 15 minutes. You'll also want to configure your domain to only renew

certificates when they're within a few hours of expiry by adding a line like:

to the top of your renewal configuration (e.g., in

/etc/letsencrypt/renewal/foo.internal.conf).

ACME.SH

acme.sh is another popular command-line ACME client. It's written completely in shell

(bash , dash , and sh compatible) with very few dependencies.

To get a certificate from step-ca using acme.sh you need to:

1. Point acme.sh at your ACME directory URL using the --server flag

2. Tell acme.sh to trust your root certificate using the --ca-bundle flag

For example:

Like certbot , acme.sh can solve the http-01 challenge in standalone mode and

webroot mode. It can also solve the dns-01 challenge for many DNS providers.

Renewals are slightly easier since acme.sh remembers to use the right root certificate.

It can also remember how long you'd like to wait before renewing a certificate.

Unfortunately, the duration is specified in days (via the --days flag) which is too

coarse for step-ca 's default 24 hour certificate lifetimes. So the easiest way to

schedule renewals with acme.sh is to force them at a reasonable frequency, like every

8 hours, via cron:

renew_before_expiry = 8 hours

sudo acme.sh --issue --standalone -d foo.internal \
 --server https://ca.internal/acme/acme/directory \
 --ca-bundle $(step path)/certs/root_ca.crt \
 --fullchain-file foo.crt \
 --key-file foo.key

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 5/17

https://github.com/Neilpang/acme.sh
https://github.com/Neilpang/acme.sh#4-use-standalone-server-to-issue-cert
https://github.com/Neilpang/acme.sh#4-use-standalone-server-to-issue-cert
https://github.com/Neilpang/acme.sh#2-just-issue-a-cert
https://github.com/Neilpang/acme.sh#2-just-issue-a-cert
https://github.com/Neilpang/acme.sh/wiki/dnsapi
https://github.com/Neilpang/acme.sh/issues/2422

LEGO

lego is another popular command-line ACME client. It's written completely in Go and

works on all platforms (Windows, Linux, Mac).

To get a certificate from step-ca using lego you need to:

1. Point lego at your ACME directory URL using the --server flag

2. Tell lego to trust your root certificate using the LEGO_CA_CERTIFICATES

environment variable

For example:

Like certbot , lego can solve the http-01 challenge in standalone mode and

webroot mode. It can also solve the dns-01 challenge for many DNS providers.

You can renew the certificates you've installed using lego by running:

You can automate renewal with a simple cron entry:

WIN-ACME

win-acme (wacs.exe) is a popular ACME client for Windows.

To use win-acme with step-ca , you'll need to do the following:

Add your root CA certificate (root_ca.crt) to the Windows trust store.

0 */8 * * * root "/home/<user>/.acme.sh"/acme.sh --cron --home "/home/<user>

sudo LEGO_CA_CERTIFICATES="$(step path)/certs/root_ca.crt" \
 lego --email="you@example.com" -d foo.internal \
 -s https://ca.internal/acme/acme/directory --http run

sudo LEGO_CA_CERTIFICATES="$(step path)/certs/root_ca.crt" lego --email=you@

*/15 * * * * root LEGO_CA_CERTIFICATES="$(step path)/certs/root_ca.crt" lego

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 6/17

https://go-acme.github.io/lego/
https://go-acme.github.io/lego/usage/cli/obtain-a-certificate/index.html#using-the-built-in-web-server
https://go-acme.github.io/lego/usage/cli/obtain-a-certificate/index.html#using-the-built-in-web-server
https://smallstep.com/docs/tutorials/hhttps:/go-acme.github.io/lego/usage/cli/obtain-a-certificate/index.html#using-an-existing-running-web-server
https://smallstep.com/docs/tutorials/hhttps:/go-acme.github.io/lego/usage/cli/obtain-a-certificate/index.html#using-an-existing-running-web-server
https://go-acme.github.io/lego/dns/index.html
https://go-acme.github.io/lego/usage/cli/renew-a-certificate/index.html
https://www.win-acme.com/

Change the ACMEv2 endpoint used by win-acme (in the settings.json file that

comes with the program) to point to your CA's ACME provisioner (eg.

https://ca.internal/acme/acme/directory). Or pass the --baseuri flag with

your ACME provisioner's endpoint.

We recommend using the tls-alpn-01 challenge type to prove ownership.

CADDY V2

Caddy is an HTTP/2 web server with automatic HTTPS powered by an integrated ACME

client. In addition to serving static websites, Caddy is commonly used as a TLS-

terminating API gateway proxy.

Caddy comes with its own ACME server and by default it will generate an internal CA

and issue certificates to itself. But, you can configure Caddy to use a local step-ca

instance to obtain certificates.

Here's a Caddyfile global config block. Add this to the top of your Caddyfile to get

certificates from ca.internal for all configured domains:

Here's a Caddyfile that will use ca.internal only to get a certificate for

foo.internal :

Replace <step path> with the output of the step path command.

Now run caddy to start serving HTTPS!

{
 email carl@smallstep.com
 acme_ca https://ca.internal/acme/acme/directory
 acme_ca_root <step path>/root_ca.crt
}

foo.internal

root * /var/www
tls carl@smallstep.com {
 ca https://ca.internal/acme/acme/directory
 ca_root <step path>/certs/root_ca.crt
}

$ sudo caddy start

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 7/17

https://caddyserver.com/
https://caddyserver.com/docs/quick-starts/reverse-proxy
https://smallstep.com/docs/step-cli/reference/path/

Check your work with curl:

Caddy will automatically renew its certificates after ⅔ of the validity period elapses.

NGINX

[NGINX][https://nginx.com/] doesn’t support ACME natively, but there are two options:

The njs-acme module allows for automatic generation and renewal of TLS

certificates for NGINX using ACME.

You can use a command-line ACME client to get certificates for NGINX.

Using the njs-acme module

See njs-acme for full documentation.

Using a command-line ACME client

Here’s an example nginx.conf that runs NGINX in a common configuration where it

terminates TLS and proxies to a back-end server listening on local loopback:

With this code, you are telling NGINX to listen on port 443 using TLS, with a certificate

and private key stored on disk. Other resources provide a more thorough explanation

of NGINX's various TLS configuration options.

We can start an HTTP server using python and check our work with curl:

$ curl https://foo.internal --cacert $(step path)/certs/root_ca.crt

Hello, TLS!

server {
 listen 443 ssl;
 server_name foo.internal;
 ssl_certificate /path/to/foo.crt;
 ssl_certificate_key /path/to/foo.key;
 location / {
 proxy_pass http://127.0.0.1:8000
 }
}

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 8/17

https://nginx.com/
https://github.com/nginx/njs-acme
https://github.com/nginx/njs-acme
https://medium.com/@pentacent/nginx-and-lets-encrypt-with-docker-in-less-than-5-minutes-b4b8a60d3a71

NGINX only reads certificates once, only at startup. When you renew the certificate on

disk, NGINX won’t notice. After each renewal you’ll need to run the following command:

You can use the --exec flag on the step ca renew command to do this

automatically:

If you’re using certbot, check out the --post-hook flag to do the same thing. If you’re

using acme.sh, check out the --reloadcmd flag.

APACHE

Apache httpd has integrated ACME support, via mod_md. Or you can deploy certificates

to Apache using an external ACME client, such as certbot.

Here’s an example Apache configuration, using certificates issued by step-ca through

certbot:

Start Apache and check your work with curl:

$ echo "Hello TLS!" > index.html

$ python -m SimpleHTTPServer 8000 &

$ curl https://foo.internal --cacert $(step path)/certs/root_ca.crt

Hello TLS!

nginx -s reload

step ca renew --daemon --exec "nginx -s reload" \
 /path/to/foo.crt \
 /path/to/foo.key

<VirtualHost *:443>
 ServerName foo.internal
 DocumentRoot /home/mmalone/www
 SSLEngine on
 SSLCertificateFile /etc/letsencrypt/live/foo.internal/fullchain.pem
 SSLCertificateKeyFile /etc/letsencrypt/live/foo.internal/privkey.pem
</VirtualHost>

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 9/17

https://smallstep.com/docs/step-cli/reference/ca/renew/
https://github.com/icing/mod_md

Apache needs to be signaled after certificates are renewed by running the following

command:

NODE

Publish Lab’s acme-client is an excellent ACMEv2 client written in Node.js. Take a look at

an example of how easy it is to obtain a certificate and serve HTTPS in JavaScript:

https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9

Most importantly, to make things work:

Point the ACME client at your ACME directory URL

Tell the ACME client to trust your CA by configuring the HTTP client to verify

certificates using your root certificate

To install dependencies and start the server run:

Then check your work with curl:

This server supports optional client authentication using certificates and checks if the

client authenticated in the handler:

$ curl --cacert $(step path)/certs/root_ca.crt https://foo.internal

Hello TLS

apachectl graceful

npm install node-acme-client
node acme.js

$ curl https://foo.internal:11443 \
 --cacert $(step path)/certs/root_ca.crt

Hello, TLS

$ curl https://foo.internal:11443 \
 --cacert $(step path)/certs/root_ca.crt \
 --cert mike.crt \

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 10/17

https://github.com/publishlab/node-acme-client
https://gist.github.com/mmalone/f3c33a2381ffa3d67e86c6d5ad3042c9

GOLANG

lego is an ACME client CLI and library written in Go. You can use it to obtain a certificate

from step-ca programmatically. You can find an example of this code here:

https://gist.github.com/ldez/e975a1026b704e55f1d1f85143b377b7

Essentially, the steps involved are:

Point lego at your ACME directory URL by setting lego.Config.CADirUrl

Tell lego to trust your CA by configuring an http.Client that trusts your root

certificate and telling lego to use it

Fetch the required dependencies and start the server:

Then test with curl:

The server is configured to verify client certificates if they are sent. That means the

server is configured to support mutual TLS. The handler checks whether a client

certificate was provided, and responds with a personalized greeting if one was.

You can get a client certificate from step-ca using an OAuth/OIDC provisioner:

 --key mike.key

Hello, mike@smallstep.com

$ go run acme.go

$ curl https://foo.internal:5443 \
--cacert $(step path)/certs/root_ca.crt

Hello, TLS!

$ step ca certificate mike@example.com mike.crt mike.key

✔ Provisioner: Google (OIDC) [client: <redacted>.apps.googleusercontent.com]
✔ CA: https://ca.internal
✔ Certificate: mike.crt
✔ Private Key: mike.key

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 11/17

https://github.com/go-acme/lego
https://gist.github.com/ldez/e975a1026b704e55f1d1f85143b377b7
https://smallstep.com/blog/easily-curl-services-secured-by-https-tls/

And test mutual TLS out with curl:

With a few tweaks to this code you can implement robust access control.

There are other good options for programmatic ACME in Go. The certmagic package

builds on lego and offers higher level, easier to use abstractions. The x/crypto/acme

package is lower level and offers more control, but it currently implements a pre-

standardization draft version of ACME that doesn’t work with step-ca .

PYTHON

certbot is written in Python and exposes its acme module as a standalone package. You

can find an example of obtaining a certificate and serving HTTPS in Python here:

https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d

Make sure that you:

Point the ACME client at your ACME Directory URL

Tell the ACME client to trust your CA by configuring the injected HTTP client to verify

certificates using your root certificate

To install dependencies and start the server, run:

Then check your work with curl:

$ curl https://foo.internal:5443 \
 --cacert $(step path)/certs/root_ca.crt \
 --cert mike.crt \
 --key mike.key

Hello, mike@example.com!

pip install acme
pip install pem
python https.py

$ curl https://foo.internal:10443 \
--cacert $(step path)/certs/root_ca.crt

Hello, TLS!

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 12/17

https://github.com/mholt/certmagic
https://godoc.org/golang.org/x/crypto/acme
https://godoc.org/golang.org/x/crypto/acme
https://certbot.eff.org/
https://gist.github.com/mmalone/12f5422b2ec68e64e9d11eae0c6ca47d

Like the Go example above, this server also supports mutual TLS and checks if the client

authenticated in the handler:

TRAEFIK

Traefik is a modern reverse-proxy with integrated support for ACME. It's designed

primarily to handle ingress for a compute cluster, dynamically routing traffic to

microservices and web applications.

Traefik v2

It's easy to get a certificate from step-ca in Traefik v2, using the tls-alpn-01 ACME

challenge type.

Most importantly, Traefik will need to trust your root CA certificate. Either use the

LEGO_CA_CERTIFICATES environment variable to provide the full path to your

root_ca.crt when running traefik , or install your root certificate in your system's

default trust store by running step certificate install root_ca.crt .

In your Traefik static configuration, you'll need to add a certificatesResolvers block:

Then, when you add routers to your dynamic configuration for HTTPS traffic, you need

to set tls and tls.certresolver :

$ curl https://foo.internal:10443 \
 --cacert $(step path)/certs/root_ca.crt \
 --cert mike.crt \
 --key mike.key

Hello, mike@smallstep.com!

[certificatesResolvers]
 [certificatesResolvers.myresolver]
 [certificatesResolvers.myresolver.acme]
 caServer = "https://step-ca.internal/acme/acme/directory"
 email = "carl@smallstep.com"
 storage = "acme.json"
 certificatesDuration = 24
 tlsChallenge = true

[http]
 [http.routers]
 [http.routers.router1]

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 13/17

https://traefik.io/

If you're running Traefik inside a Docker container, you can get your root CA certificate

and add it to the container's trust store by running the following:

Traefik v1

To get a certificate from step-ca to Traefik v1 you need to:

Point Traefik at your ACME directory URL using the caServer directive in your

configuration file

Tell Traefik to trust your root certificate using the LEGO_CA_CERTIFICATES

environment variable

Here’s an example traefik.toml file that configures Traefik to terminate TLS and

proxy to a service listening on localhost:

 ...
 [http.routers.router1.tls]
 certResolver = "myresolver"

$ step ca bootstrap --ca-url "${CA_URL}" --fingerprint "${CA_FINGERPRINT}" -
$ update-ca-certificates

defaultEntryPoints = ["http", "https"]
[entryPoints]
 [entryPoints.http]
 address = ":80"
 [entryPoints.https]
 address = ":443"
 [entryPoints.https.tls]
[acme]
storage = "acme.json"
caServer = "https://ca.internal/acme/acme/directory"
entryPoint = "https"
[acme.httpChallenge]
entryPoint = "http"
[[acme.domains]]
main = "foo.internal"
[file]
[frontends]
 [frontends.foo]
 backend = "foo"
[backends]
 [backends.foo]

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 14/17

https://docs.traefik.io/providers/file/

Start Traefik by running:

Start an HTTP server for Traefik to proxy to, and test with curl:

CERTIFY THE WEB

Certify The Web is a popular ACME Certificate Manager for Windows. It provides a full UI

for managing thousands of certificates, supports a wide range of built in deployment

tasks and integrates with many DNS API providers. Commercial licensing and support is

also available.

To use with step-ca :

Add your CA root certificate to Local Machine > Trusted Certificate Authorities and

your CA intermediate to Local Machine > Intermediate Certification Authorities. This

will make your endpoint certificate (and the other ACME certificates you issue from

your CA) trusted on this machine.

Add your step-ca instance details as a new Certificate Authority under Settings >

Certificate Authorities. You can set the Production and Staging API urls either to the

same directory endpoint or point them to different instances if you are operating a

split staging and production configuration.

Add a CA account for your new CA under Settings > Certificate Authorities > New

Account, selecting your new CA from the list.

Select New Certificate to begin ordering a new certificate from your CA. Make sure to

set your CA preference under Certificate > Advanced > Certificate Authority (or you

can set this as a global setting). You can use HTTP or DNS validation. Select Request

Certificate to perform your certificate order. Subsequent renewals are automatic.

 [backends.foo.servers.server0]
 url = "http://127.0.0.1:8000"

LEGO_CA_CERTIFICATES=$(step path)/certs/root_ca.crt traefik

$ echo "Hello TLS!" > index.html
$ python -m SimpleHTTPServer 8000 &
$ curl https://foo.internal --cacert $(step path)/certs/root_ca.crt

Hello TLS!

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 15/17

Subscribe to updates

Your email

Learn

Blog

Try for free

Register for demo

Products

Certificate Manager

Smallstep SSH

ACME Registration Authority

Integrations

Documentation

Certificate Manager

Smallstep SSH

step-ca

Tutorials

Step command reference

By default the certificate will be added to the local machine certificate store. It can

also be automatically deployed to IIS sites on the same machine, or you can use

Deployment Tasks to push certificates to secrets vaults or to remote machines via

SFTP (windows or linux etc) or to UNC shares etc.

Unsubscribe anytime, see Privacy Policy

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 16/17

https://twitter.com/smallsteplabs
https://twitter.com/smallsteplabs
https://www.linkedin.com/company/smallstep
https://www.linkedin.com/company/smallstep
https://github.com/smallstep
https://github.com/smallstep
https://bit.ly/step-discord
https://bit.ly/step-discord
https://smallstep.com/blog/
https://smallstep.com/signup/
https://go.smallstep.com/request-demo
https://smallstep.com/certificate-manager/
https://smallstep.com/solutions/smallstep-ssh/
https://smallstep.com/acme-registration-authority/
https://smallstep.com/integrations/
https://smallstep.com/docs/certificate-manager/
https://smallstep.com/docs/ssh/
https://smallstep.com/docs/step-ca/
https://smallstep.com/docs/tutorials/
https://smallstep.com/docs/step-cli/reference/
https://docs.certifytheweb.com/docs/deployment/tasks_intro

Open Source

step-ca

Step CLI

About

About

Support

Status

Careers

Privacy

Terms of use

Privacy Policy

Privacy Center

Security

© 2025 Smallstep Labs, Inc. All rights reserved

21.03.25, 21:15 Configure popular ACME clients to use a private CA with the ACME protocol

https://smallstep.com/docs/tutorials/acme-protocol-acme-clients/ 17/17

https://smallstep.com/certificates/
https://smallstep.com/cli/
https://smallstep.com/about/
https://support.smallstep.com/
https://status.smallstep.com/
https://jobs.ashbyhq.com/smallstep
https://smallstep.com/terms-of-use/
https://smallstep.com/privacy-policy/
https://smallstep.com/security/

