
Smallstep Certificate Manager | Your Hosted Private CA

Learn more >

Updated on: May 20, 2024

Mike Malone Follow Smallstep

If you're a normal human person you probably don't think much about certificate

revocation. This post will help you justify your apathy. It will explain why your

indifference is, in fact, the technically correct attitude to have regarding this particular

detail of your system's security architecture.

But first, let's talk certificates more generally. Certificates deserve more attention.

They're underappreciated and underutilized. Over the past few years HTTPS adoption

on the web has sky-rocketed (largely thanks to Let's Encrypt). It's time for our internal

systems to get the same treatment: communication between microservices, containers,

functions, connected devices, and whatever else constitutes "production" should be at

least as secure as our day-to-day web browsing.

Good certificates die young:
what's passive revocation and
how is it implemented?

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 1/16

https://smallstep.com/certificate-manager/
https://twitter.com/smallsteplabs
https://letsencrypt.org/
https://smallstep.com/

Luckily, TLS — the protocol behind HTTPS — is not limited to web browsers and servers.

TLS is ubiquitous. There are implementations in every standard language library. It's

supported by proxies, queues, databases, and pretty much everything else. So, you can

use mutual TLS (mTLS) to securely connect stuff, in any language, whether that stuff is

on-prem or in the cloud, running across multiple clouds, at the edge, or anywhere else.

All without complex network-level magic. If you need to securely connect stuff, you

should use TLS.

To do so, all you need are certificates.

Turns out getting certificates to all the places they're needed is easier said than done.

Harder still is automating these processes without compromising security. We built

step and step certificates to make automated certificate management easy.

step lets you spin up your own certificate authority (CA) and issue, renew, and (as of

today) revoke certificates.

But I digress. Let's back up. What even is a certificate, and why are they so useful?

 Star smallstep/cli 3,803 Star smallstep/certificates 7,126

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 2/16

https://smallstep.com/blog/use-tls.html
https://github.com/smallstep/cli
https://github.com/smallstep/certificates
https://github.com/smallstep/cli
https://github.com/smallstep/cli/stargazers
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates/stargazers

Mutual TLS uses public/private key pairs (a.k.a. asymmetric key pairs) for

authentication. The magic of asymmetric cryptography is that we can sign some data

using a private key and someone else can verify our signature using the corresponding

public key.

Critically, you can only verify a signature using a public key. You can't generate one.

You need the private key to do that.

If you know my public key, you can authenticate my identity via the following protocol:

1. You generate a big random number and send it to me

2. I sign your big random number with my private key and send you my signature

3. You verify my signature using my public key

If I'm the only one that knows my private key, then I'm the only one who could have

generated the signature. So, you must be talking to me. That's roughly how TLS works.

With mutual TLS I'd also challenge you to prove your identity to me.

For this to work, you need to know my public key. What if you don't? That's why we have

certificates. A certificate binds a name to a public key. They're issued by a certificate

authority (CA) (i.e., they're signed by the CA's private key). Before running the

authentication protocol described above, I can simply send you my certificate, which

you can verify and decode to extract my public key.

Certificates elegantly solve the public key distribution problem. Instead of knowing the

public key of everyone you want to talk to, you only need to know their names and the

public key of a CA you trust to issue certificates.

This sort of infrastructure — CAs and protocols and such for managing and distributing

public keys — is called public key infrastructure (PKI). The beautiful thing about

certificate-based PKI is that, once certificates are issued, it's completely decentralized. I

can send you my certificate and you can validate it without runtime assistance from any

central authority. Thus, certificate-based PKI is inherently fault tolerant and trivial to

scale. This is a good thing.

But decentralization has a down side: there's no way to actively disseminate certificate

revocation information to the relying parties that use certificates. In other words, once a

certificate is issued, you can't un-issue it. Certificates do eventually expire but, until

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 3/16

then, a compromised private key can be used to impersonate the certificate owner. This

is not a good thing.

At a glance this seems like a straightforward enough problem. The obvious solution is to

simply build a mechanism for revoking a certificate: immediately marking a certificate as

invalid despite its genuine appearance.

Thankfully, we needn't invent such a mechanism. Two standard mechanisms for

certificate revocation already exist:

1. Certificate Revocation Lists (CRLs) list the serial numbers of revoked certificates in

one big downloadable data structure, and

2. Online Certificate Status Protocol (OCSP) defines an API for determining whether a

particular certificate has been revoked.

Unfortunately, both of these mechanisms have pretty major issues.

CRLs generally contain the serial number of every revoked certificate. In a large dynamic

system, with services and machines coming and going continuously, this list will get big

fast. Downloading a huge list of revoked certificates every time a connection is

established would be slow and resource-intensive, so CRLs are usually cached. Caching

Revocation

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 4/16

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc2560

creates a delay between when a certificate is revoked and when the rest of your system

notices. Thus, revocation is not immediate.

OCSP responses may also be cached, with the same consequence. However, caching is

less necessary because OCSP responses are relatively small. But, without caching, you

get a different problem. Checking revocation status using OCSP requires a blocking

request to an OCSP responder every time a certificate is validated (i.e., every time a

connection is established). Obviously, this adds latency.

CRL and OCSP also add significant architectural and operational complexity: they both

take a beautifully distributed authentication system and add a central choke point that

could become a scale bottleneck or, worse, take your entire system down. In theory it

seems like highly available and scalable CRL & OCSP infrastructure should exist.

Unfortunately, as far as I know, it doesn't. There's no off-the-shelf open source solution

here. (This is something we're working on at smallstep.)

Even if good CRL & OCSP infrastructure did exist, there's a much hairier problem with

these protocols: lack of support amongst relying party implementations. While the core

TLS protocol is supported almost everywhere, CRL and OCSP are not. By default, most

TLS implementations (outside of web browsers) don't check CRL or OCSP revocation

status. In other words, it's very likely that your favorite language's TLS implementation

will happily accept a revoked certificate.

The non-trivial operational challenge of building and operating highly available CRL &

OCSP infrastructure, combined with the lack of good support for these protocols by PKI

participants, makes reliable active revocation extremely challenging to deliver in

practice.

So where does this leave us? Is there a better way?

We want the ability to quickly invalidate the binding between a name and a public key

globally, without centralized infrastructure, and without relying on any special features

of TLS that might not be supported everywhere.

The answer is simple: short-lived certificates.

Passive Revocation

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 5/16

Again, certificates expire. After expiration, they're no longer trusted. This happens to be

a core characteristic that every non-broken TLS implementation will implement

correctly.

Historically, without automation, certificates were issued with fairly long lifetimes:

months or years. Shorter lifetimes simply weren't feasible. Frequent manual renewals

would be a full-time job. This is no longer a problem. Operational automation allows us

to make certificate lifetimes much shorter: days, hours, even minutes.

If we make certificate lifetimes short enough, we can leverage expiration to

approximate revocation: instead of killing a certificate by actively revoking it before it

expires, we can disable renewal for a certificate and simply let it die. This is called

passive revocation (which is really just a fancy way of saying let's not explicitly do

revocation at all).

Admittedly, passive revocation does leave a window of time during which an attacker

might be able to misuse a certificate. But even if you absolutely must have immediate

revocations, you'll still want passive revocation and short-lived certificates for two

reasons:

1. The vast majority of certificates fall out of use for administrative reasons: no key

compromise has occurred; the certificate is simply no longer needed. Passive

revocation can be used here instead of burdening your CRL or OCSP infrastructure.

2. Certificates can be culled from CRLs and/or from your OCSP responder's active set

once they've expired. So keeping certificate lifetimes short will make these other

mechanisms more efficient.

So, you're going to want passive revocation, even if you also implement some other

revocation mechanism.

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 6/16

Let's walk through what's required to build an internal PKI with passive revocation,

using step to demonstrate. Ultimately what we need are: 1) short-lived certificates,

with 2) automated renewal, and 3) some way to disable renewal for "passively revoked"

certificates.

Install step (brew install step) to follow along at home.

First, let's initialize a new PKI and start the step CA. We'll write a password out to

password.txt so we don't have to enter it repeatedly.

Now let's generate a single-use bootstrap token and use it to obtain a certificate. (In a

real production infrastructure something in your software delivery pipeline — puppet,

chef, ansible, kubernetes — would generate this token and hand it to whatever needs a

certificate):

Now we can generate a keypair and use our token to obtain a certificate for

foo.local from our CA:

SHORT-LIVED CERTIFICATES

$ echo "p4ss" > password.txt

$ step ca init --name "Local CA" --provisioner admin \
 --dns localhost --address ":443" \
 --password-file password.txt \
 --provisioner-password-file password.txt

$ step-ca $(step path)/config/ca.json --password-file password.txt

provisioner$ step ca token --password-file password.txt foo.local
✔ Key ID: w1OUFng_fCqWygHHpc9Ak8m_HGmE0TEasYIfahLoZUg (admin)
eyJhbGciOiJFUzI1NiIsImtpZCI6IncxT1VGbmdfZkNxV3lnSEhwYzlBazhtX0hHbUUwVEVhc

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 7/16

https://github.com/smallstep/cli#installation-guide
https://smallstep.com/docs/cli/ca/token/
https://github.com/smallstep/certificates/blob/master/autocert/README.md

As demonstrated here, the default lifetime of certificates issued by step-ca is 24

hours. There's no technical definition of "short-lived", but this is suitably short for many

scenarios. If it's not right for you, you can adjust the defaultTLSCertDuration per-

provisioner or pass the --not-after flag to step ca certificate to adjust the

lifetime of an individual certificate. Shorter lifetimes (e.g., five minutes or so) are better

from a security perspective, but we'll soon find there's some operational pressure

pushing in the other direction.

With short certificate lifetimes, our services and devices will likely out-live their

certificates. We need to renew certificates that are still in use, extending their lifetimes

before they expire. Again, step makes this very easy:

foo$ step ca certificate foo.local foo.crt foo.key --token eyJhb...
✔ CA: https://localhost
✔ Certificate: foo.crt
✔ Private Key: foo.key

foo$ step certificate inspect --short foo.crt
X.509v3 TLS Certificate (ECDSA P-256) [Serial: 2599...1204]
 Subject: foo.local
 Issuer: Local CA Intermediate CA
 Provisioner: admin [ID: w1OU...oZUg]
 Valid from: 2019-05-01T21:06:25Z
 to: 2019-05-02T21:06:25Z

AUTOMATED RENEWAL

foo$ step ca renew --force foo.crt foo.key
Your certificate has been saved in foo.crt.

foo$ step certificate inspect --short foo.crt
X.509v3 TLS Certificate (ECDSA P-256) [Serial: 1664...3445]
 Subject: foo.local
 Issuer: Local CA Intermediate CA
 Provisioner: admin [ID: w1OU...oZUg]

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 8/16

https://github.com/smallstep/certificates/blob/master/docs/GETTING_STARTED.md#use-custom-claims-for-provisioners-to-control-certificate-validity-etc
https://github.com/smallstep/certificates/blob/master/docs/GETTING_STARTED.md#use-custom-claims-for-provisioners-to-control-certificate-validity-etc
https://smallstep.com/docs/cli/ca/certificate/

Note the change in the validity period relative to the original certificate above.

Renewing a certificate and updating a file in-place on disk is a great start. But a process

that uses a certificate will typically only read it from disk once, when it starts up. Luckily,

it's common for infrastructure like nginx to respond to a SIGHUP by reloading

configuration files and other artifacts, including certificates.

Rather than renewing immediately and exiting, we can pass a couple flags to tell step

ca renew to daemonize, renew the certificate periodically, and execute a command to

HUP our hypothetical nginx proxy after each renewal:

This completely automates renewals for this scenario.

If you're terminating TLS in your apps instead of using a proxy, good for you! But you

will have to write a bit of additional logic to handle renewals. To help, we've started

collecting production-grade examples of these procedures in various programming

languages in a sub-repository of step certificates called hello mTLS. We're just getting

started but we've got a few good examples there already and are happily awaiting

contributions!

Once daemonized, the renew command waits until the certificate's lifetime is two-

thirds elapsed before attempting a renewal (e.g., it waits 16 hours then starts renewing

8 hours before a certificate with a 24 hours lifetime expires). Renewals are retried if the

CA is unavailable, so there's some operational leeway if the CA goes down.

This is the operational pressure towards longer-lived certificates that we alluded to

earlier. If certificates live for 24 hours our CA can be down for 8 hours before

 Valid from: 2019-05-01T21:15:16Z
 to: 2019-05-02T21:15:16Z

foo$ step ca renew --daemon --exec "kill -HUP $NGINX_PID" foo.crt foo.key
INFO: 2019/05/01 14:22:18 first renewal in 15h50m43s

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 9/16

https://github.com/smallstep/certificates
https://github.com/smallstep/hello-mtls

certificates start expiring. That's a decent window in which to receive an alert and

remediate. But if we push certificate lifetimes down to a couple minutes, we'll need to

make sure our CA doesn't go down for more than a minute or two. That's harder.

Furthermore, since certificates are issued and validated on different servers, very short

certificate lifetimes require precise clock synchronization across your entire

infrastructure. All of this is technically possible but requires a lot of operational

discipline to pull off. Know thyself and beware.

Renewal allows a certificate owner to extend the lifetime of a certificate before it

expires. Unfortunately, it also lets an attacker with the right private key do the same

thing. To prevent this, we need some way to tell the certificate authority not to renew a

particular certificate. The most recent release of step (v0.10.0) adds this

functionality.

If a private key is compromised, we can use step to passively revoke a certificate,

disabling renewals:

Any subsequent attempt to renew a passively revoked certificate will fail,

and the attempt will be reported in the CA logs:

PASSIVELY REVOKING A CERTIFICATE

foo$ step ca revoke --cert foo.crt --key foo.key
Certificate with Serial Number 48122447568876458238057740509229876261 has

foo$ step ca renew foo.crt foo.key
error renewing certificate: Unauthorized

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 10/16

This may seem like a small enhancement (and it is). But it's important. Passive

revocation is the right way to handle certificate revocation 99% of the time, and this

addition to step and step-ca makes passive revocation dead simple.

Certificate-based PKI is awesome. But you do need to have a plan in place to handle a

private key compromise. At first this seems like an easy enough problem to solve, but

it's fraught. CRL and OCSP are operationally complex and poorly supported by relying

parties. A shoddy implementation can compromise the scalability, efficiency, and

availability of your entire system.

Turns out this is one of those happy situations where the right answer is also the easy

one: don't do revocations at all. Instead, issue short-lived certificates. Automate

renewals, and use passive revocation to disable renewal for certificates with

compromised private keys. Then simply let them die. This strategy is easier to

implement, harder to misuse, and the resulting system is easier to operate. If you need

help, check out step :

All you normal human people were (kinda) right all along: if you set things up properly,

certificate revocation isn't worth worrying about. But certificates are. If you don't

already have an internal PKI you should get yourself one. And start using TLS

everywhere. It's the right thing to do.

WARN[0841] duration="103.709µs" duration-ns=103709 error="renew: certific

So you were right all along

 Star smallstep/cli 3,803 Star smallstep/certificates 7,126

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 11/16

https://smallstep.com/blog/use-tls.html
https://smallstep.com/blog/use-tls.html
https://github.com/smallstep/cli
https://github.com/smallstep/cli/stargazers
https://github.com/smallstep/certificates
https://github.com/smallstep/certificates/stargazers

Subscribe to updates
Unsubscribe anytime, see Privacy Policy

Your email

Mike Malone has been working on making infrastructure security easy with Smallstep

for six years as CEO and Founder. Prior to Smallstep, Mike was CTO at Betable. He is at

heart a distributed systems enthusiast, making open source solutions that solve big

problems in Production Identity and a published research author in the world of

cybersecurity policy.

Smallstep Certificate Manager | Your Free Hosted Private CA

Learn more >

Step Certificates Technical

Further Reading

23.03.25, 17:02 Good certificates die young: what's passive revocation and how is it implemented?

https://smallstep.com/blog/passive-revocation/ 12/16

https://smallstep.com/privacy-policy/
https://www.tandfonline.com/doi/abs/10.1080/11926422.2013.805152
https://smallstep.com/certificate-manager/
https://smallstep.com/tags/step-certificates/
https://smallstep.com/tags/technical/

